Summary of a numeric variable
summary_num.Rd
Summary statistics for numeric variables.
Arguments
- x
A numeric vector
- type
A boolean value, if TRUE the function will add metrics related to the variables type (default = TRUE)
- other_means
A boolean value, if TRUE the function will add the harmonic and geometric means (default = FALSE)
- skewness
A boolean value, if TRUE the function will add the skewness coefficients (default = FALSE)
- kurtosis
A boolean value, if TRUE the function will add the kurtosis coefficients (default = FALSE)
Details
By default the summary statistics are:
- min: the minimum;
- p25: the first quartile;
- p50: the second quartile (median);
- p75: the third quartile;
- max: the maximum;
- mode: the peak density value;
- mean: the mean;
- cv: the coefficient of variation.
If `type` = TRUE, the following metrics will be added:
- n: the number of observations;
- na: the number of missing values;
- negative: the number of negative values;
- equal_zero: the number of values equal to zero;
- positive: the number of positive values.
If `other_means` = TRUE, the following metrics will be added:
- geometric_mean: the geometric mean;
- harmonic_mean: the harmonic mean.
If `skewness` = TRUE, the following metrics will be added:
- Bowley
- Fisher-Pearson
- Kelly
- Rao
- Pearson median
If `kurtosis` = TRUE, the following metrics will be added:
- Bowley
- Fisher-Pearson
- Kelly
- Rao
- Pearson median
Examples
x <- c(rnorm(10),NA,10)
x
#> [1] -0.1803943 -1.5676751 -0.2607259 0.9618104 0.8538955 0.4187967
#> [7] 0.3399565 0.5964251 1.8714180 0.6028704 NA 10.0000000
summary_num(x)
#> # A tibble: 1 × 8
#> min p25 p50 p75 max mode mean cv
#> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 -1.57 0.0798 0.596 0.908 10 0.574 1.24 2.44