Test the normality of a numeric variable
stat_normality.Rd
Test the normality of a numeric variable.
Arguments
- x
A numeric vector
- alpha
A numeric single value (default = 0.05), that is the significance level to compute the variable 'is_normal'
- digits
A integer single value (default = NULL), that will be the number used to round the values
A boolean value, if TRUE the function will print the values in the viewer (default = FALSE)
Value
A tibble (7x4) with each test: statistic, p-value and the condicional check of normality, given the alpha.
Details
Apply the following normality tests:
- Anderson-Darling
- Cramer-Von Mises
- Kolmogorov-Smirnov
- Lilliefors
- Pearson chi-square
- Shapiro-Francia
- Shapiro-Wilk
Examples
x <- rnorm(100)
stat_normality(x)
#> # A tibble: 7 × 4
#> test statistic p_value is_normal
#> <chr> <dbl> <dbl> <lgl>
#> 1 Anderson-Darling 0.239 0.775 TRUE
#> 2 Asymptotic one-sample Kolmogorov-Smirnov 0.0482 0.975 TRUE
#> 3 Cramer-von Mises 0.0416 0.648 TRUE
#> 4 Lilliefors (Kolmogorov-Smirnov) 0.0482 0.823 TRUE
#> 5 Pearson chi-square 9.46 0.489 TRUE
#> 6 Shapiro-Francia 0.993 0.838 TRUE
#> 7 Shapiro-Wilk 0.993 0.912 TRUE